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Abstract

The present study is conducted to examine the entropy generation and second law analysis for the laminar flow
passing through a circular duct with restriction and swirl. The governing fluid and energy equations are solved
numerically for the combination of the conditions of restriction and swirling. The dimensionless quantities for the
entropy generation, heat transfer and irreversibility are developed. The influence of Prandtl number, restriction and
swirl on the dimensionless quantities and merit number are discussed. It is found that the irreversibility increases
with increasing Prandtl number. The effect of swirling and restriction on the dimensionless quantities is more
pronounced at high Prandtl numbers. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The viscous flows through ducts with symmetric sud-
den contractions in cross-sectional area results in flow
field that may be of interest in many engineering areas.
A number of studies have been carried out introducing
different contraction ratios [1,2]. Many aspects of axi-
symmetric flow in contractions were discussed that
encompasses Newtonian and non-Newtonian viscoelas-
tic fluids [3]. The velocity field developed due to flow
through an abrupt contraction and expansion was
investigated by Xia et al. [4]. They demonstrated that
the Reynolds number associated with the inlet flow
condition was the determining factor for the flow field
development.

The transitional flow and its convective heat transfer
in a smooth pipe were examined by Huiren and
Songling [5]. They showed that in the fully developed
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region, flow and heat transfer were not affected by
inlet turbulence intensities. Conjugate heat transfer in
a thick-walled pipe with developing laminar flow was
investigated by Schutte et al. [6]. They considered two
transient situations, which included the transient heat
transfer in steady, developing pipe flow, and the simul-
taneous transient development of flow and heating in a
pipe. They concluded that all the parameters con-
sidered had significant influence on the Nusselt num-
ber, interfacial temperature, bulk temperature, and
interfacial heat flux. The steady conjugate heat transfer
in a developing pipe flow was numerically investigated
by Faghri et al. [7]. They considered a blowing and
suction at the inner pipe wall in heat pipes. Yan et al.
[8] investigated the conjugate heat transfer in fully
developed pipe flows when the pipe wall temperature
was suddenly raised to a new constant temperature.
On the other hand, the optimal design for thermal
systems may rely on the minimization of the entropy
generation in the system. In recent years, entropy mini-
mization has become a topic of great interest in the
thermo-fluid area. In fluid flow, the irreversibility arises
due to the heat transfer and the viscous effects of the
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Nomenclature

Ap coefficient for ¢ in the numerical ex-
pression

a area

D duct diameter

do angular increment

E Eckert number

h enthalpy

1 irreversibility

I dimensionless irreversibility

k thermal conductivity

L length of duct

M merit number

m mass flow rate

Pr Prandtl number

P pressure

Q heat transfer

o dimensionless heat transfer

R radius of the duct

Re Reynolds number

r distance in the radial direction

Sy source term for variable ¢

S volumetric dimensionless entropy gener-
ation

Sgen volumetric entropy generation

.g”én* volume?ric averaged dimensionless entropy
generation

temperature

ambient or reference temperature

temperature at the wall

volume

velocity in the radial direction

velocity in the axial direction

SRR

Greek symbols

ry exchange coefficient for ¢
u dynamic viscosity
p density (function of temperature and press-

ure for gas)
o temperature ratio (Ty,/T)
0] viscous dissipation
¢ arbitrary variable

fluid. In the fluid system, when both temperature and
velocity fields are known the entropy generation due to
both effects at each point in the system can be pre-
dicted. The analytical solutions of the entropy gener-
ation for the developing and the fully developed flows
within a smooth channel were obtained by Bejan [9]
and Carrington and Sun [10]. The analytical approach
to the problem however, becomes difficult as the geo-
metric and flow conditions are complicated.
Consequently, numerical solution to the problem
becomes inevitable. Numerical predictions of entropy
generation for mixed convective flow in a vertical
channel with transverse fin array was investigated by
Cheng and Ma [11]. They computed the local entropy
generation by solving the entropy generation equation
and they proposed a geometric configuration of the
finned channel with improved second-law efficiency.
An extensive review on entropy generation minimiz-
ation was carried out by Bejan [12]. The review traced
the development and adoption of the method in several
sectors of mainstream thermal engineering and science.
Thermodynamic analysis of convective heat transfer in
a packed duct with asymmetrical wall temperatures
was investigated by Demirel and Al-Ali {13]. They esti-
mated the pressure drop due to packing and demon-
strated the influence of physical and geometric
parameters on the entropy generation. The second-law
analysis of heat transfer in swirling flow through a
cylindrical duct was investigated by Mukherjee et al.

[14]. They calculated the local Nusselt number and
rate of entropy generation. A merit function was
defined and influence of swirling on the merit function
was discussed. However, the study was limited to a
cylindrical smooth duct, and the influence of Prandtl
number on the entropy generation and the merit func-
tion was not discussed in detail. Consequently, the in-
fluence of restriction in swirling flow through a
cylindrical duct and the effect of Prandtl number on
the entropy generation need to be examined further.

In the present study, swirling flow through a cylind-
rical duct with restriction is taken into account. The
wall temperature of the duct is considered as uniform
and higher than the fluid temperature. The flow con-
ditions are set to obtain a laminar case. Three-dimen-
sional governing flow and energy equations are solved
numerically introducing the control volume approach.
Non-dimensional entropy generation, heat transfer,
irreversibility and the merit function are derived. The
effect of swirling and Prandtl number on the non-
dimensional entropy generation, heat transfer, irre-
versibility and merit function are investigated.

2. Mathematical analysis
2.1. Flow and energy equations

The set of partial differential equations governing a



Table 1
Variables and the corresponding conservation equations
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. 1. Schematic view of (a) a two-dimensional grid and (b) grid used in the present computation.
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steady flow field with constant swirl can be written in
cylindrical polar coordinates (r, 8, z) as:

%(pUqS - F¢%>

19

" (D
+ ; 5<prV¢ - 1"¢r—-) = S¢

ar

In Eq. (1), ¢ is a general variable, T'y is the exchange
coefficient for the property ¢, S, is the source ex-
pression for ¢. In the most general form, it may com-
prise a term for the rate of generation of ¢ per unit
volume together with other terms that cannot be
included in terms on the left-hand side of Eq. (1).

Eq. (1) becomes the conservation for mass, z-
momentum, r-momentum, f-momentum and energy
equations when setting ¢ =1, W, V, U and T respect-
ively. Eq. (1) is the compactly represented elliptic par-
tial differential equation, and the list of the dependent
variables and the associated definitions of I'y, and S
are given in Table 1.

2.2. Boundary conditions

The boundary conditions appropriate to laminar
flow through a circular duct (Fig. 1) with constant
swirl, uniform wall temperature, and without and with
restrictions are:

Without restriction:
At inlet:

V = U = specified; T = specified = 300 K

At wall

W=V=U=0; T=specified=400K
(constant along the pipe length)

At symmetry axis:

W aT
—=0; V=0, — =
ar ar 0
At outlet:

9¢

9z

where ¢ represents a general variable.

With restriction
All the boundary conditions introduced for the case
of without restrictions are applicable, and the follow-

ing boundary conditions are imposed at the restriction:
1 D
Atz=§L and OSrSZ; wW=0

where L is the duct length and D is the duct diameter.

2.3. Entropy, irreversibility and heat transfer analysis

The non-equilibrium process of exchange and
momentum transfer within the fluid and at the solid
boundaries results in continuous entropy generation in
the flow system. The local entropy generation per unit
volume for a incompressible newtonian fluid may be
written as [15]:

k #
Sgen = TE(VT)Z + ?‘D (2)

or (Sgeona = K/THVT) and (Sgndse = (w/T)®
where in polar coordinates;

o= (5 () ]+ ()

(aV 3W)2 (8U U>2

+ 0z + ar + or 1

Here, (Sgen)cond represents the entropy generation per
unit volume due to heat transfer and the (Spen)fric is
the entropy generation per unit volume due to fluid
friction.

Sgen €an be written in non-dimensional form. In this
case, the temperature is non-dimensionalized by divid-
ing the wall temperature (T,), spatial length is divided
by the pipe radius (R) and the velocities are divided by
the axial velocity (W). The resulting non-dimensional
entropy generation per unit volume becomes:

e 2
S///* _ SgenR

s =7 — = 0*(VT")’ + Pr Eo(®") 3)

where 0=(T,/T) (Ty is the wall temperature), Pr is
the Prandtl number (Pr=uC,/k), and E is the Eckert
number (E za)iz/(CpT w), where W, is the axial velocity
at pipe inlet).

The volumetric averaged dimensionless entropy gen-
eration can be written as:

Sgen =5 ——dbdzrdr

s J SitnR2

However, the irreversibility is defined as:

I=T,Sgn
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where

Sgen = J Syend dz 1 dr
A\

The combination of irreversibility with volumetric
averaged dimensionless entropy generation results in:

— k
I=TaSgen 7{7\7’
or
., I RR1 T,—
P = kv 1,5 @

where I* is the non-dimensional irreversibility.
The heat transfer to the fluid can be written as:

. . m exit
O=m Cp(Texit — Tinter) = minleth [—
inlet

T exit — T; inlet:l

where ritiye = p; Wid; or

QR2 — PrRei(nnlet)l:mexitTexit _ I:I

T, ka 2L T, w m inlet Tinlel
or
. _ OF
Q TwkY
R
J pTddzrdr 5)
— pr R€£<l) 0 exit 1
- 2L\o R
J pTdfdzrdr
0 inlet

where Q" is the non-dimensional heat transfer to the
fluid. The rate of exergy transfer accompanying energy
transfer at the rate of Q is given as [14]:

T,
Qa=Q(1 - i;)

where T, is the ambient or reference temperature,
which is considered exergy reference environment tem-
perature and T, is the wall temperature which is con-
sidered as a suitable temperature at the surface where
the heat transfer takes place.

The merit function is defined as the ratio of exergy
transferred to the sum of exergy transferred and exergy
destroyed [14], i.e.:

_ 0
0.+1

or using non-dimensional quantities:

T
o(-%)
M= Tw

T,
Q*(I—T—)-f-l*

©)

3. Numerical solution of governing equations

The set of partial differential conservation equations
governing the flow field are compactly presented by
Eq. (1) and the accompanying Table 1, which lists the
dependent variables and the associated definitions T'y
and S,. For the purpose of solution the flow domain
is overlaid with a rectangular grid as shown in Fig. 1
whose intersection points (nodes) denote the location
at which all variables, with the exception of the vel-
ocities, are calculated. The latter are computed at lo-
cations midway between the pressure which drive
them. The details of the grid cluster are given in [16].
The mesh used in the present study has 2500 (50 x 50)
node points as shown in Fig. 1.

The control volume approach is used in the numeri-
cal scheme. In this case Eq. (1) is integrated over the
control volume, with the aid of assumptions about the
relations between the nodal values at ¢ and the rates
of creation/destruction of this entity within the cells
and its transport by convection and diffusion across
the cell boundaries. The former is represented in lin-
earized form as:

S¢EJS¢dV=So+Sp¢p
v

and the transport by expressions of the form e.g.:

(¢p + Pw) (¢p + Pw)
pr—z—aw - F¢,W—Waw

when the quantity Pe, (the cell Peclet
number= pUydxpw /Iy w) is small and by

pUsdy if Uy>0

pUgtbp if Uy<0

when Pe,, is large in magnitude. Subscripts P and W
refer to the central and west nodes, respectively, and w
denotes the intervening cell boundary. Assembly of the
above and similar expressions for the remaining
boundaries yield for the finite difference equation in
the form:

(Ap — Se)pp = D Authy + S

where X, is the summation over the neighboring
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Fig. 2. Velocity vectors for the com

nodes, Ap = ZA4,, and S, and Sp are deduced from S,
of Table 1. The finite difference equations are written
for each of the variables at every cell with appropriate
modifications being made to the total flux expressions
at cells adjoining the boundaries of the solution
domain to take account of the conditions imposed
there. An equation for the unknown pressure is
obtained by combining the continuity and momentum
equations in the manner described in the literature
[171.

A staggered grid arrangement is used in the present
study. This arrangement provides handling the press-
ure linkages through the continuity equation and is
known as the SIMPLE algorithm [18)]. This method is
an iterative process to steady-state convergence. The
pressure link between continuity and momentum is
accomplished by transforming the continuity equation
into a Poisson equation for pressure. The Poisson
equation implements a pressure correction for a diver-
gent velocity field. The steady-state convergence is
achieved by successively predicting and correcting the
velocity components and the pressure. An initial guess

for the pressure variable at each grid point is intro-
duced.

bination of cases of swirl and restriction.

4. Results and discussion

The numerical simulation of flow and temperature
fields is carried out for various Prandtl numbers which
range from 0.1 to 10, and swirl velocities ranging
between 0 and 0.6 m/s. The results presented in the
present study may be classified as the effect of restric-
tion, Prandtl number and swirl velocities on the (i)
flow field, (ii) entropy generation, and (iii) dimension-
less heat transfer, irreversibility and merit function.

Fig. 2 shows the velocity vectors developed for
smooth and restricted ducts with and without swirl
conditions. In a smooth duct, flow develops as the
axial distance increases. On the other hand, swirling
results in reverse flow at the inlet region of the smooth
duct (Fig. 2(a)). As the axial distance increases the
flow disturbance due to swirling dies and the flow
develops towards the duct end. In the case of restric-
tion, the reverse flow is evident immediately after the
restriction in the smooth duct. The reverse flow results

"in a considerably large recirculation region close to the
solid boundary of the pipe. Flow recovers as the axial
distance increases towards the end of the duct.
Moreover, the effect of swirling on the flow field which
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Fig. 3. Axial velocity (W) along the circular duct for the combination of cases of swirl and restriction.

is developed in the restricted duct, is more pronounced
at the duct inlet and around the restricted region. In
this case the flow at inlet first spills considerably
upwards and develops an adverse effect on the flow
close to the solid boundary. As the radial distance
increases towards to the duct end, the reverse flow
diminishes. When comparing swirling and no-swirling
cases, the size of the circulation generated close to
solid boundary after the restriction is larger in the case
of no-swirling than that generated in the swirling case.
In addition, the swirling generates a second recircula-
tion region close to both the centerline of the duct and
the restriction. When comparing both circulations gen-

erated due to swirling, the circulation generated close
to the centerline is smaller than that which occurs
close to the solid boundary of the duct. This may be
due to the high kinetic energy of the fluid at the center
line in which case the size of the circulation formed is
reduced.

Fig. 3 shows the axial velocity (W) variation along
the axial distance for smooth and restricted ducts with
and without swirling conditions. In both cases, axial
velocity increases as the axial distance increases. As
indicated earlier, swirling results in a circulation for-
mation in the region close to the inlet of the unre-
stricted duct. The axial velocity is slightly lesser in the



4034 B.S. Yilbas et al. | Int. J. Heat Mass Transfer 42 (1999) 40274041

Swirl Vel. = 0.0 m/s

lIJJlIIIIIlII|IlIIl

Radius of duct (m)

Swirl Vel. = 0.6 m/s

S e e s A S I W SN TN TN AT T Y}

I||III|II

002 004 006 008

0.1 0.12 014 0.16 0.8 0.2

Axial distance (m)
without restriction

g 0010
~ = Swirl Vel. = 0.0 m/s
S 0.005 [
= g
» £
'5 0‘010 :l-ll/|\| [T T i £ I T I | i L I I | l | I I LI T | ‘ t 41 ]
& ‘ o555 Swirl Vel. = 0.6 m/s
0.005 i
0.000 |lllll!l|‘l|lllllll
0 002 008 01 012 014 016 018 02
Axial distance (m)

with restriction

Fig. 4. Radial velocity (V) along axial distance for the combination of cases of swirl and restriction.

case of swirling than the no-swirling case. This may in-
dicate that the development of the flow in the axial
direction delays slightly when swirling is introduced.
On the other hand, the restriction introduced in the
duct disturbs the flow field considerably, which in turn
results in a reverse flow and consequent circulation for-
mation. In the case of no-swirling condition, a circu-
lation is formed immediately after the restriction and
close to the solid boundary. When the swirling is intro-
duced, three circulations are seen close to the region of
restriction.

Fig. 4 shows the radial velocity distribution along
the axial distance for smooth and restricted ducts with
and without swirling conditions. The flow attains para-
bolic velocity profiles, which develop as the axial dis-
tance increases for the smooth duct without swirling.
As indicated before, swirling develops considerably
large circulation after the duct inlet, which in turn dis-
turbs the development of parabolic velocity profiles
along the axial distance. The restriction, however, dis-
turbs the flow resulting in formation of circulation
regions. Moreover, the size of the circulations increase
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as the swirling is imposed. In this case, the circulation
developed in the radial direction extends towards the
center of the duct.

Fig. 5 shows the isobars for smooth and restricted
ducts with and without swirling conditions. The
straight constant-pressure lines are observed along the
axial distance for a smooth duct without swirl con-
dition. The isobars are disturbed as the swirling intro-
duced for both smooth and restricted ducts. High
pressure regions are developed in the vicinity of the
restricted region. This extends further towards

upstream when the swirling is introduced for the
restricted duct.

Fig. 6 shows the logarithm of the constant entropy
generation lines, due to fluid friction and heat transfer,
along the axial distance for smooth duct with and
without swirl conditions. The entropy generated per
unit volume due to fluid friction increases at the inlet
and close to the solid boundary for both swirl and no-
swirl conditions. This may be attributed to the flow
distortion in which case, frictional loss increases sub-
stantially. When comparing swirl and no-swirl con-
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ditions, the effect of swirl on the entropy generation is differs significantly from the frictional entropy gener-
apparent i.e. the entropy generation increases in the ation; in this case, frictional entropy generation attains
case of swirling. However, the influence of Pr on the considerably lower values as compared to entropy gen-
frictional entropy generation is insignificant. On the eration due to heat transfer. This may be because of

other hand, entropy generation due to heat transfer the temperature difference between the solid boundary
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Fig. 9. Variation of Q*, I'* and M with Prandtl number for the combination of cases of swirl and restriction. s, wr and nr represent
swirl velocity {(m/s), with restriction and no-restriction, respectively.
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and the fluid inlet temperature, which is 100°C. The
effect of swirling is more pronounced at Pr = 1.

The entropy generation due to friction and heat
transfer for restricted duct is shown in Fig. 7. The
restriction results in considerable frictional entropy
generation close to the restricted region and solid
boundary. This may be due to the circulation formed
in these regions. The constant entropy lines follow
almost the velocity contours for the no-swirling case.
As the swirling is imposed, the constant entropy lines
become drift appearance close to the restriction region.
However, once the flow is developed towards the duct
end, constant entropy lines are straightened. The influ-
ence of the Pr on the entropy generation due to heat
transfer is similar to that occurred in Fig. 6. In this
case, the effect of restriction on the entropy generation
due to heat transfer is almost negligible. Moreover, the
effect of Pr on the entropy generation is more pro-
nounced at high Pr, as indicated earlier.

Fig. 8(a) shows the constant non-dimensional heat
transfer (Q*) lines with swirl velocity and Prandtl
number for the conditions of with and without restric-
tions. Small variation occurs in iso-Q* lines with swirl
velocity at low Pr. As the Pr increases iso-Q* lines de-
viate from the straight appearance. Therefore, the in-
fluence of the Pr on the Q* becomes considerable at
high swirl velocities. The effect of swirling on Q* is sig-
nificant as the Pr increases. In this case, the slope of
iso-Q* lines changes as the swirl velocity increases. In
addition, the influence of restriction is more pro-
nounced at high swirl velocities and Pr. Fig. 8(b)
shows the constant-non-dimensional irreversibility (/™)
lines with swirl velocity and Pr for restriction and no-
restriction conditions. Similar to Fig. 7, the influence
of Pr and swirl velocities on the ™ is insignificant at
low Pr. However, as Pr increases, I™* increases and the
effect of swirl on the I™ becomes significant. In ad-
dition, the influence of restriction on iso-I* lines is
insignificant at low Pr. Fig. 8(c) shows the constant
merit number (M) lines with swirl velocity and Pr for
the conditions of with and without restriction. The iso-
M lines have drift appearance at low Pr and high swirl
velocities. As Pr and swirl velocity increase iso-M lines
smoothens and inclines with positive slope. The influ-
ence of restriction is more pronounced when swirling
velocity increases.

Fig. 9(a) shows the dimensionless heat transfer (Q™)
with Pr for the conditions of with and without restric-
tion and swirl. Q™ increases with increasing Pr as con-
sistent with the previous findings [14]. The effect of
swirl and restriction may become visible at high Pr
numbers, however, this effect is small. Therefore, it is
the Pr that influences the heat transfer substantially as
compared to swirling and restriction. Fig. 9(b) shows
the dimensionless irreversibility (/™) with Pr for the
conditions with and without restriction and swirl. I*

increases as Pr increases. This may occur because of
the entropy generation due to heat transfer and fric-
tion, provided that the contribution of frictional
entropy generation to the irreversibility substantiates
when the swirling and restriction are introduced. The
effect of swirling and restriction on the I™ becomes
apparent at high Pr. Fig. 9(c) shows the variation of
merit number (M) with Pr at various combinations of
conditions including restriction and swirling. M varies
considerably with Pr such that it first increases and
decreases to attain minimum, then increases with
increasing Pr. This may be due to the fact that the
increase in heat transfer is higher than the irreversibil-
ity increase for 0.3 < Pr < 2. On the other hand, M
increases and attains a positive slope for 2 < Pr < 10.
In this case the rate of increase in heat transfer well
exceeds the rate of increase in irreversibility. The effect
of swirl and restriction on M is more pronounced at
high swirls and low Pr. The restriction and swirl
reduces the M for all Pr, i.e. the lowest M is resulted
at high swirl velocity. In addition, the point of mini-
mum of M moves towards high Pr as the swirl velocity
increases. Consequently, high swirl velocity may
increase the heat transfer, but reduces the M because
of the irreversibility generated.

5. Conclusions

The conclusions derived from the present work may
be listed as follows:

1. The flow field is disturbed considerably when
swirling and restrictions are imposed onto the flow
in the duct. This results in circulation in the region
close to the restriction and the solid boundary.
Consequently, the entropy generation due to friction
is amplified in these regions. On the other hand, the
entropy generation as a result of heat transfer
attains considerably higher values than that gener-
ated due to friction. The swirling and restriction
enhance the entropy generation due to heat transfer.
The effect of the Pr on the entropy generation is
considerable. This effect is more pronounced at high
Pr.

2. Non-dimensional heat transfer (Q*) increases as Pr
and the swirl velocity increase. The effect of swirl
and restriction on Q™ may become apparent at high
Pr provided that this effect is not substantiated as
compared to the effect of Pr on Q™.

3. Non-dimensional irreversibility (/™) increases with
increasing Pr. This may be the result of entropy
generation due to heat transfer enhancement at high
Pr. The effects of swirl velocity and the restriction
on the I'* become significant as Pr increase.

4. Merit number (M) varies considerably as Pr
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increases. M attains low values for 0.3 < Pr < 2.
Alternatively, M increases for 2 < Pr < 10.
Increase in M indicates that the rate of increase in
heat transfer well exceeds the rate of increase in irre-
versibility. The effect of restriction and swirl velocity
on M is visible at high swirl velocity and low Pr.
The lowest M occurs when no-restriction and high
swirl velocity are introduced. Therefore, high swirl
velocity may increase the heat transfer, but reduces
the M because of the attainment of high irreversibil-

ity.
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